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Abstract. This artic!e considers a posteriori error estimation of specified function-
als for first-order systems of conservation laws discretized using the discontinuous

Galerkin (DG) finite element method. Using duality techniques, we derive exact
error representation formulas for both linear and nonlinear functionals given an as-
sociated bilinear or nonlinear variational form. _Veighted residual approximations of
the exact error representation formula are then proposed and numerically evaluated
for Ringleb flow, an exact solution of the 2-D Euler equations.

1 Introduction

A frequent objective in numerically solving partial differential equations is

the subsequent calculation of certain derived quantities of particular inter-

est. e.g., aerodynamic lift and drag coefficients, stress intensity factors, etc.

Consequently, there is considerable interest in constructing a posteriori error
estimates for such derived quantities so as to improve the reliability and ef-

ficiency of numerical computations. For an introduction to a posteriori error

analysis see Eriksson et al. [9], related work by Estep et al. [13], Parashivoiu

et al. [15], and the recent report of Oden and Prudhomme [14]. For hyperbolic

problems and applications in fluid mechanics see Johnson et al. [12], Giles et

al. [liD], Becker and Rannacher [4] and Siili [16].

This article revisits the topic of a posteriori error estimation of prescribed
functionals with special emphasis and consideration given to nonlinear sys-

tems of conservation laws discretized using the discontinuous Galerkin (DG)

finite method, see for example Johnson and Pitk_ranta [11], Bey and Oden

[5]. and Cockburn et al. [7,8]. In a departure from this previous work, our
DG formulation for systems of conservation laws uses entropy symmetriza-

tion variables as discussed in detail in the companion papers by the second

author [3,2.1].

In Section 2, we briefly review the abstract model for a posteriori error

estimation of functionals. Next, we consider the DG method for nonlinear

systems of conservation laws and derive concrete error estimates in terms

of element residual and weight formulas. Section 4 numerically assesses the
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sharpness of these estimates for the specific example of Ringle b flow which
has a known exact __olution via hodograph transformation.

2 .4 Po_.teriort Error Estimation of Functionals

Abstract model problem. In this section, we give an abstract presentation

of a posteriori error estimation for functionals based on duality techniques.

Consider the following abstract variational problem: find u E X such that

A(g;u,v)=O VveX, (2.1)

and the corresponding discrete problem: find Uh E Xh such that

.4(g;Uh,Vh)=0 V vn E Xn. (2.2)

Here X is a suitable function space, Xh C X is a discrete space, for instance,

discontinuous piecewise polynomials of degree k, and 9 some prescribed data.

Note that bounda_- conditions are weakly imposed in the variational state-

ment thus permitting both u and v to reside in X. For brevity, we sometimes

write A(uh. vh) = .4(g: Uh, Vh). Our objective is to estimate the error

M(u) - M(uh), (2.3)

in a given hmctional ._I(-). The first step is to derive an error representation
formula.

Error representation: linear case. We first assume that .A(-, .) and M(.) are

both linear. To derive a representation formula for the error (2.3), we intro-

duce the dual problem: find • E X such that

ACv,_) = MCv) V v • X. (2.4)

Setting v = u - uh in (2.4) yields

M(u) - M(uD = M(u - u,)

= A(u - uh, _)

= A(u - un, • - _rn_)

= A(u, 4_ - 7r^_) - A(uh, • - _rh_')

= -A(uh, • - rrn_)

(linearity of M)

(2.4)

(orthogonality)

(linearity of A)

(2.1),

where 7rh_ • Xa C X is an interpolant of _. Thus we have the error repre-
sentation formula

3t(u) - M(Uh) = -A(y; un, •- ¢rh4_). (2.5)
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First-order nonlinear system. Consider the prototype conservation law prob-
lem: find u : .Q _ IRm such that

L(u) = f'(u).z, = 0 in .q.

fl-(n;g,u)(g - u) = 0 on F.

(3.1)

where o is a domain in IRa with boundary F with local exterior normal vector

n and --l(n: u) = nJ!,_ is the flux Jacobian matrix. In addition, ,-l(n;g,u)
denotes the mean value matrix obtained from the path integration

f01
.5i(n;s,t)= ft(n;t +O(s-t)) dO (3.2)

and P±(n: s, t) the associated characteristic projectors. Throughout, we as-
sume that u denotes the symmetrization variables so that the matrices .4 are

necessarily symmetric.

Next. consider a finite element tessellation T of f2 composed of nonover-

lapping elements T_. T = UT. T_ n Tj = @, i y_ j and FT the tessellated
boundary. The prototype system can be restated in variational form1: find

uEX such thatVv EX

J(g:u.v) : _ ((L(u),v)r + (fl-(n;g,u)(g - U),V)oTnrr
T-_ 7-

+ <P-(n; u_, u+)[f(n; u)] +, v-)OT\rr)

(3.3)

Note that other mathematically equivalent formulations are possible by group-

ing together terms element-wise and edge-wise. The above particular grouping
has been chosen as it reflects a discrete balance of conserved quantities on an

element-by-element basis. In Section 4, we briefly revisit the possibility of al-

ternate groupings although our numerical results show that the element-wise

grouping presented above yields superior estimates.

A posteriori error estimate residuals and weights. A straightforward appli-
cation of Cauchy-Schwarz inequality (with ,_o introduced from entropy sym-

metrization theory for dimensional consistency) (3.3) yields the following

t In actual implementations it is desirable to use an integrated-by-parts form (see
for example [3,2]) so that exact discrete conservation is achieved on elements with
inexact quadrature and/or inexact path integration (3.2).
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Error representation." nonlinear case. Consider now the case of a nonlinear

variational form +4(...) and functional M(.). To perform the analysis given

above, we introduce the following mean value linearizations

.4(g:u.v. :A(g:uh.v)+A(g.uh,u;U--Uh.v) VvEX (2.6)

._l{u: = M(uh) + 3[(u^,u;u -- uh), (2.7)

and the dual linearized problem: find • E X such that

A(g, uh,u:v,4") = M(uh,U;V) V v E X. (2.8)

In addition, we have the following orthogonality relation

.4(g, uh,u;u - Uh,Vh) = 0 V Vh E A'h. (2.9)

Proceeding in the same fashion as above, using simplified notation for brevity,

.Xl(u) - 3I(uh) = M(u - uh) (2.7)

= A(u - u^, 4") (2.8)

= A(u - uh, 4' - rrh4_) (2.9)

= M(u, '_ -- rch'_') -- A(uh, _ -- ,'the) (2.6)

= --A(uh, 4" - rrh_), (2.1)

thus yielding the following final error representation formula

3I(u) - M(uh) = -A(g; uh, _ -- +rh_). (2.m)

Abstract a posteriori error estimates. Starting from (2.5) or (2.10), we derive

various error estimates by estimating the right hand side of (2.10) using
standard inequalities. Later, the sharpness of these inequalities is numerically

assessed. Consider the following sequence of direct estimates

IM(u)- M(u_)I = 1__., Av(g;uh,':P- +h'_) I (2.11)
T

< _ I.AT(g; uh, 4" -- rrn+)l (2.12)
T

<_ _ RT(Bh) " WT(O), (2.13)
T

where .AT(..') denotes the restriction of .4(-,.) to the element T. Further
RT(Uh) is a computable estimate of the residual of Uh on T. and WT(4") is

a weight on T describing the local influence of 4, both are defined below.
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element residuals RT and weights tVr for use in (2.13)

Rr(Uh) =
{IL(uh)ll.4o, .r _- ]

tlP-(n:~U-.hU-_.h)[f(n;Uh)]: ll.ao_ OT\rrl (3.4)

1t.4-(n,g:ua)(g -- uh)ll._ff' rT J

wr( ) = /ll - ' h llao,OT\r | (3.5)

Approximating the dual problem. The weight formulas (3.5) require the cal-

culation of the quantity _ - Z'h¢ from the dual problem which requires a
priori knowledge of both u and uh for use in the mean value linearizations

(2.6) and (2.7). Since u is not generally known, we supplant this calculation

with the approximate discrete counterpart to (2.8): find _h E Xh such that

A(g, uh. Uh;Vh,_h) = M(uh,uh;vh) V v E Xh. (3.6)

Observe that -_(g, uh, uh; v, _h) and _-'_(uh, uh; vh) are precisely the Jaco-

bian linearized forms of the respective operators. Using the techniques de-

scribed in Barth [3.2], exact Jacobian derivatives of the DG scheme for sys-

tems of conservation laws have been derived and used in all subsequent cal-
culations. We have investigated the computation of the needed dual solution

terms using two different techniques:

(1) High-order approximation. Suppose u_hk) denotes a numerical solution

computed in X(hk). Embed u (k) in XIht), l > k and approximate _ . rr(hk)4i

4i_ht)_ 7rh-(k)'_(t)wh . This technique is employed in the calculations given below.

(2) Recovery post-processing. Let "-h =a : _'+ denote a recovery

operator, approximate 4_-Trfk)4 i _ _)gi(k)_4t(k), l > k. Recovery operators

based on local compact supported least-squares fitting are considered in a

forthcoming report by the present authors.

4 Numerical Results

To evaluate the accuracy of the error representation formulas given in Sect. 2,

Ringleb flow (an exact solution of the 2-D Euler equations obtained via hodo-

graph transformation, see [6]) is computed in the channel geometry shown in

Fig. 4.1(a). Next, the vertical force component exerted on the channel walls
is computed from the functional

M+(u) =/rw (+" n)p(u) dl (4.7)
all
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F

ia) Coarsest triangulation (b) Primal solution iso-(c) Dual solution iso-
I342 elements), density contours, density contours.

Fig. 4.1. Ringleb flow test problem. Primal and dual solutions calculated using the
DG discretization with cubic elements for the vertical force functional M,(u).

with p(u) the fluid pressure and • a constant vertical vector. Iso-density

contours of the Ringleb primal and dual solutions are given in Figs. 4.1(b-c).

We now evaluate the validity and sharpness of the error estimate formulas
(2.11)-(2.13) and (3.5). In Fig. 4.2 we graph for constant (a) and linear
(b) approximation: (o) the exact error; (x) estimate (2.11); (A) estimate

(2.12): (7) estimate obtained from element-edge form of (3.3); (El) estimate
!3.5). In all case__ the dual problem is defined by (3.6) and Solved using cubic

polynomials. The difference between (o) and (x) is caused by linearization,

i.e., replacing u in (2.8) by uh to get (3.6). This appears to be a very small

error. Next, the more significant loss due to use of the Triangle Inequality is
gaphed in (A). This prevents cancellation between elements. Further error

is introduced _ia Cauchy-Schwarz (N) thus preventing cancellation within

the element. Finally, note that the element based estimate (A) is notably

superior to the element-edge based estimate (v), where in the latter case
contributions are grouped together in such a way that element conservation

is violated. Based on our numerical experimentation, we propose the adaptive

method:

• Evaluate a stopping criterion via IA(uh, ¢_ - zrh_)_l.

• Evaluate an adaptation criterion via IA(u^, _ - a'h_)T[.

In addition, the adaptation criterion may be further improved by the use

of sharpened variants of the Triangle and Cauchy-Schwarz Inequalities. We

consider these topics further in a forthcoming paper.
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